sy s EOSDIS
arth Observin gﬁystem W
Dt and Information System

EOSDIS Test System (ETS)
for PM-1 Support

Design Status Presentation

May 13, 1999

SIMSS Design Status 1 5/13/99

Review Purpose

Acqualint the user community with our current design status
and provide for feedback into the SIMSS/PM-1
development effort.

SIMSS Design Status 2 5/13/99

Collaborative Development (1 of 2)
(Copied from the SIMSS SDR Presentation)

 ETS work funded by Mission Systems as CSOC SODA

task (G936)

— Work includes:
» development of PM-1 and future EOS simulators
» current support of Terra MPS
» upgrade of SCTGEN for PM-1 & beyond

o Separate SOMO-funded SODA task (G903) to enhance
our suite of spacecraft simulators and test tools

— Called Scalable Integrated Multi-mission Simulation Suite
(SIMSS)

» spacecraft component (SC)
» network test tool (NeTT)

SIMSS Design Status 3 5/13/99

Collaborative Development (2 of 2)
(Copied from the SIMSS SDR Presentation)

 The ETS PM-1 spacecraft simulator
— Referred to as SIMSS/PM-1
— Built on the SIMSS architecture and baseline objects

— ETS developers adding PM-1 specific extensions to
simulator and test tool

SIMSS Design Status 4 5/13/99

Simulator Design for PM-1

SIMSS Design Status 5 5/13/99

Overview

SIMSS Design Status

IP
Receive

CDBs

Command
Logging

Telemetry
Logging

A

A

PM-1 Ground Station

Module

I ch IP xmit——»

Telemetry EDUs

Q ch IP xmit >

Commands

|

I ch Qch

Telemetry
Packets

PM-1 Spacecraft

Module

5/13/99

Telemetry Diagram

Controller 1

(only 1 pkt
list active)

Packet List 1 &
Format Tables

Spacecraft

Controller 2

Packet List 2 &
Format Tables

Controller 3

Controller 4

Packet List 3 &
Format Tables

Packet List 4
& Format Tables

Packets
APID 1 APID 2 APID 3 APID 4 APID 5 APID N
Packet Up to 128
Contents _Hdr [[t [t [tw[wp] [p] i
SIMSS Design Status params .

5/13/99

Telemetry Data Flow Diagram

TImGenerator generates the packets

using the PDB and/or other information .

TImGenerator available to it, then passes the data to DataTransmit is
(active) TimDistributor. responsible for the

low-level connection

to the outside world.

Virtual Channel

Physical
Channel DataTransmit
(active)

TImDistributor

TImDistributor is responsible for
filtering and mapping the generated
data to virtual channels.

Virtual Channel

External Data

The Virtual Channel saves the incoming data pending a call from the Physical

Physical Channel. The Virtual Channel provides two calls to the Physical Channel

Channel, one a "gimmeDone" and one a "gimmeNow." The former is a

request for any completed VCDUSs and will only succeed if there are any. A Physical Channel is an active
The latter is a demand for a VCDU, so the Virtual Channel will have to thread that is responsible for
complete one with fill data if one is not available. collecting and outputting the data.

The standard PC will get the data
from within the model. An external
data PC will read the data from a
file.

SIMSS Design Status 8 5/13/99

Telemetry Use-Case Description

Refer to

“Use-Case Textual Description for PM-1 Telemetry Generation”
Word document

SIMSS Design Status 9 5/13/99

Command Ingest Data Flow Diagram

EDU
Ingest NettBuffer TCdata AD Cmds >
Extract CLTU(s) to —_ Extract packets
SimBuffer Extract Transfer
Frames from Send to command
SimBuffer identification s/w
BC Cmds
| Unlock and SetVR
v Transfer Frame
CLTU Validate T.F. header
Parity check (including FARM protocol)
codeblocks within Update CLCW
SimBuffer
BD Cmds

TIE Commands

.

SIMSS Design Status 1 5/13/99

SIMSS Design Status

Command Ingest Class Hierarchy

= TR TETRER [NRSAT SRS LR A =

Thire may s misitipi SLTLIS 0o massags fiom 3 ground sigon
Thusre may bel st Sod g biocks wdihin 8 CLTLS

A Tranzlar Frama rmay be made up fommulple codeblocks

TRl ng sy Do T Traseier Frasmog wanm o CLTU

A Transfer Frames may contain mukple Packste

PV CiaD - Copvinn am o Thare el

+akecuta {3 wald

Fi_ChMD:@roundStationiessage

Fi_CMD:TCdata

camminri g ladfsr @ M TTRuifsrf

- te sl [RimBuffer [] = nwll

+ ingusl [) SEmBullar®
+ EbCLTU{ § - RimBufTari

+ gddTeData { consl SmBuMTar® bullar, ookl S50 landlh § § voiy
+ il‘ITl'l muEFrams [§ - consl SimBuiTar &

P_CMD:CLTU

P CMDinualChanmel

B C T T S ':'u-mEuﬁ'ar&

- u-l:urt&murm:a : RimBufTerk

= GailaHGo RS EJMHI.IH'IH&

- i:|lu'|l'llll:|l‘"|:lI'IFlIn : bood = frus

+ lastGL T SimBaffer [1

- mtmrtSsqgla rlglh xhorf = F
imilSequancelangih - gshart =0

-waid ; LinEByte

+ framealidoationFisg | ool = trug

+ farmialidationFing : bool = trus

-wlews @ SimPiUiTer(d] =0

= wolidTranaFrames Ceoamié © Double = &
|I'I'd'll|-ﬂ'|'l'll1lFl1l'l1lcﬂuli : Crouble =0

+ laslTrarmsFroma | SimBafTer [] =0

+ warifyStortSaq i) : oo

+ warifyTailReqg §) : ool

+ warifylengthi [§ - baal

+ nertCoclebloch { §: conat Unalyis&
+ numCodsblocks |] el

= @aArL T | consl Elri.lllul'l'ihl BulTar, Conkl shor langlh) © Dod

+ pidiTransFrame | l.lniﬂy'l:-i-& ¥ 1 Eedadl
+ InVElidFreme §)
+ laValidFAFRM {]!
+ eV | §: :-:lnlt Dreatd s
+ LW [) - Consl LidByLes
+ gatvalidFramatowd [- consl Dowlbla i

o i3 IFTaive Sl | b ! Conil Do) o &

FM_CMD i Facket

P _CMD : TransferF rame

- Wargien | UnEByta =0

-lypa [bEE =

- g@oHeaderFiag | kool =0

-2pid | LnSWerd =0

- megFlag Urluﬂ-'r“ =ik

- OACHGTE I:I'E.i:ll.ll'll: I Ling'Waord =0

. pachetlangth ; LineWord =

- AEtAZ oG RIMBLUTers =

- dammandCaunt | nsByta = 0

- afithimaticChadKEUm | UngByla =0
- pac ket nlidationFlag baal = tros

= byPareFing kool =0
--:-:mlrl:alc-ﬁmmmnﬁan e = ¥
u'lrl.lun - UneByie =
= RN l]l'll|:|l|ltl- - n
=meid - l.Inl'il'l'-nrd =0
weild :IJnlE‘.lIi =
- framalsingh : Lh'li-'i"ul'l:rl'#.l = ff
-rrlmaidﬂi:--:-ul'l i UnaByets =0

framsDatn :Im Hasdffsrk =0
+ mddFrome § SimBurTers BulTar, skl langlh § @ void

+ pgatPockat { SimadTsrk bitsr, short® lamgih § - void

+ medelPachat [RImBUTar® packat, LIneWord lengihi) @ vaig
= gt &PICE{ § - LineByte
+ gatiTmde {) UnxByts

o W@y Gl g H 6 mtll
- vnrlfrr!‘;n:hmHl-nL:

11

5/13/99

Command Ingest Reports

Refer to

“CMDlIngestClassModel.doc”
Word document

SIMSS Design Status 12 5/13/99

Command Use-Case Description

Refer to

“Use-Case Textual Description for PM-1 Command Ingest”
Word document

SIMSS Design Status 13 5/13/99

Use-Case Descriptions

o Other Use-Case Descriptions to be produced later
— command recognition
— end-item command verification
— memory load and dump
— Format Table / Packet List load and switch

SIMSS Design Status 14 5/13/99

Functionality for Release 1.0

 Static telemetry in IP mode EDUs

e Command ingest

e Logging of Command Data Blocks and EDUs
 Maintain GMT and Spacecraft clock

e User Interface
— Display telemetry status
— Display event messages
— Start and stop telemetry transmission

SIMSS Design Status 15 5/13/99

Development Schedule

April | May | June
D | Task Name Duration Start 21 (28| 4 [11]|18[25] 2] 9 [16[23[30[6 [13[20[27] 4
20 [Ed GUIs 15 days Mon 5/10/99
21
22
23 SC/PM-1 Subsystems 35days | Mon 4/12/99 []
24 [Ed Sim/RMM 25 days Mon 4/12/99 -
25 [Ed Telemetry 30 days Mon 4/12/99
26 [Ed Commanding 30 days Mon 4/12/99 —
27 [Ed SC Main 15 days Mon 5/10/99 =
28 |[Ed GuI 35days | Mon 4/12/99 i:.
29
30 Integration and Testing 53 days | Mon 4/12/99 [| |
31 [Ed Integration/Integration testing 10 days Mon 5/24/99
32 |[EH System Test Plan 40days | Mon 4/12/99 [— |
33 [Ed User's Guide 40 days Mon 4/12/99 —
34 [Ed System Test 13 days Mon 6/7/99
35
36 [Ed Delivery 0 days Thu 6/24/99 6/24

SIMSS Design Status 16 5/13/99

Dependencies Matrix

_ e __ |
@ On target for June delivery sC
. _ SE— Commands
* Substantiall let
¥ Substantially complete RMM /
Implement *|
P \ SC ETS PM 1.0
NeTT * NeTT X Telemetry '
Server » Server
Design Implement *
EOS GS
Module
% RS
NeTT Client NeTT Client e
Design Implement SC GUI
Implement
¥
SC GUI ® @ |
Design IP Module
Key Dependencies @ommand |
_ Generation ETSPM 1.0
fOI’ EOS PM .1 Module Test Tool
Release 1.0 Delivery
Telemetry
Data Quality
Module

SIMSS Design Status 17 5/13/99

Test Tools

e NelT

— Telemetry

» Delog and display by EDU

» Eventually use the PDB to display by parameter
— Command

» Log in parallel with SIMSS/PM-1

» Delog and display by CDB

» Later on:
e display by CLTU and Transfer Frame
= Use the PDB to display by command
= Use the PDB to generate valid PM-1 commands

SIMSS Design Status 18

5/13/99

Test Tools, continued

Command Generator
EDU Delogger

Equipment at SOC (Bldg 25) for telemetry logging
HexEdit

SIMSS Design Status 19 5/13/99

Needs List

« The PDB DFCD

 The PDB as flat files

« EDOS to EGS ICD updates

» preloaded Packet Lists and Format Tables

« Ada symbol to telemetry point physical address mapping

* Mnemonics of command counters that appear in telemetry

» Date for rigorous timing of telemetry packets

» Date for support of multicasting

« Formal points of contact within each organization

o Detailed, prioritized, requirements list for command subsystem

SIMSS Design Status 20 5/13/99

Information Sources

o [CD Between the EOS Common Spacecraft and the EOS
Ground System (EGS) October 15, 1998 (TRW)

e Appendix Z
« TRWIOCs

e The MIT Website
— Question/ Answer Matrices
— 10OCs
— ICDs

SIMSS Design Status 21 5/13/99

Information Sources, continued

 Flight Software Requirements Specification
e Command Allocation Document

o Telemetry Allocation Document

« EOS Command and Telemetry Handbook for the PM-1
Spacecraft, May 15, 1998 (TRW)

SIMSS Design Status 22 5/13/99

Use-Case Textual Description for PM-1 Telemetry Generation

Telemetry simulation for the PM-1 spacecraft is much different from AM-1. PM-1 telemetry is controlled
by packet lists and format tables, to be explained below.

PM-1 telemetry is sent out by the SIMSS simulator as EDUs. Each EDU will consist of an EDOS Service
Header (20 bytes) followed by one VCDU. The VCDU consists of a VCDU header, and a Data Unit Zone.
The Data Unit Zone consists of one M_PDU Header and 208 bytes of telemetry information encapsulated
in CCSDS packets. See Figure 6.2.1-1 on page 6-2 of the Space-to-Ground ICD for a picture of the VCDU
Data Unit Zone.

The spacecraft contains four controllers (and the AIRS controller, to be added later). Each controller is
responsible for a subset of the total telemetry generated by the spacecraft. For reference purposes they are
the Command & Telemetry Controller (CTC), the G&NC Controller (GNCC), the Power Controller (PC),
and the Instrument Support Controller (ISP).

The following discussion applies to each controller.

As noted above, the telemetry generated by each controller is controlled by packet lists and format tables.
Each controller has four packet lists, of which only one is active at a given time. Which one is active is
determined by operator entry. (TBD —in a later release the simulator may accept a ground command to set
the active packet list.)

Telemetry packets generated by the instruments are not covered here. The amount and type (packet
contents and lengths) have not yet been researched. It is TBD but currently assumed that a fifth controller
will be added later to simulate instrument telemetry.

Packet lists appear to be allocated as follows. One for 16k telemetry (known as housekeeping), one for 4k
telemetry (TDRS SA mode), one for 1k telemetry (TDRS MA mode), and one as backup to be loaded and
used as necessary. It is planned by the FOT that a switch from one packet list to another will be performed
via Stored Command just prior to contact with a ground station or TDRS. SIMSS can simulate this via
operator entry. In the absense of any operator entry, SIMSS should default to 16k telemetry. Since SIMSS
cannot tell from Packet List/Format Table contents which packet list is desired for the data rate selected, it
is the responsibility of the operator to ensure that the correct packet list is selected for the data rate
requested.

The contents of all packet lists and format tables will be supplied by EMOS.

A packet list contains from one to 16 entries. Each entry consists of three fields: (1) the number of the

corresponding Format Table, (2) the Sample Period, and (3) the Slot Number.

» The Format Table defines all of the telemetry data that will go into the packet and thus the packet
length.

» The Sample Period field defines the frequency of transmission of the packet using one of the 10
modulo counters. e.g. the Sample Period field contents will be the number of one of the modulo
counters. The range of the field is0 to 9.

e The Slot Number is the offset from the zero count of the modulo counter defined by the Sample
Period. Its purpose is to even out the rate of telemetry generation. The maximum size of each packet
list is 48 16-bit words.

Each controller has 16 Format Tables. Each Format Table contains a header and from one to 128 telemetry
point definition entries. The header contains the memory dump flag (more later), a count of the number of
telemetry points defined, and the packet APID. Each telemetry point definition entry contains the access
type and the physical memory address of the data to be collected. The access type tells the controller the
number of bytes (1 to 6) to collect for that telemetry point.

Page 1 of 5

Aboard the spacecraft, the physical memory address is the address in that controller’s memory where the
first, or least significant, byte of data resides. SIMSS will fake this as follows. All objects that are
simulating controllers will have to locate the telemetry node for every entry in all Format Tables. This
involves finding an equality between the entry in the Format Table and the physical address stored in the
telemetry node. An offline program will be used to add the physical addresses to all telemetry nodes when
the PDB is translated for SIMSS use. It was originally thought that the same offline program could be used
to perform the equality matching to determine telemetry mnemonics from physical addresses. However, if
SIMSS achieves the level of fidelity needed to accept a table load of Format Tables or Packet Lists, as it is
understood the customer desires, then the mapping will have to be done in realtime.

We have an external need for the “Ada symbol to physical address map” to be supplied to us by EMOS.

Another question involves telemetry points that are single bit in nature. It is being presumed that one and
two bit flags will be collected together in a single byte or word for transmission. Aboard the spacecraft
these will most likely occupy the same byte of memory. If they (some of the bits) are set/reset by a piece of
hardware that is external to the controller, then there is no problem from the SIMSS point of view. Their
address will be the base address of that byte. If, however, there are bits that are set independently by the
controller, or bits that are given telemetry mnemonics, then the physical address of some mnemonics may
not correspond to the address given in the Format Table but will be in the same byte/word that that address
points to. The existance of these telemetry points is TBD.

It is known that a nearly identical problem was encountered and solved in the development of the Landsat
simulator. Therefore the easiest solution may be to reuse as much of that design and code as possible.

Failing that, alternative solutions are possible. It may be necessary to have the offline PDB translator
examine addresses for all parameters that are not an integral number of bytes in length and group those that
reside at the same “base” address. Perhaps mnemonics will have to be invented to describe the group. The
objective is to make it easy for the online software, which is time constrained, to assemble the bits into a
byte or word to go into the packet, while still making it easy for the operator to set a telemetry point by
mnemonic. Implementation details are TBD.

Next subject: Here is how the modulo counters work. There are ten modulo counters per controller aboard
the spacecraft. They all count in lockstep, incrementing once every 125 milliseconds (msec) and roll back
to zero when their respective modulo counts are reached. The following table gives the ranges of the
counters. Notice that the mod_1 counter doesn’t really count. It merely ticks every 125 msec.

counter range
mod 1 0
mod 2 0-1
mod 4 0-3
mod 8 0-7
mod-16 0-15
mod_32 0-31
mod_64 0-63
mod_128 0-127
mod_256 0-255
mod 512 0-511

Example: If entry #3 of the packet list has 2 as its Sample Period and 3 as its Slot Number, this means that
that packet will be generated every time the mod_4 counter reaches 3.

Page 2 of 5

The following PDL is given as a guide to the coders of controller modules.

/I INITIALIZATION
As soon as the current packet list is determined
For every entry in every Format Table referenced by the current packet list
Locate the corresponding telemetry node in the PDB by comparing the physical address to
addresses in the PDB until a match is found.
Output a warning message if no match is found.
EndFor
For each entry in the current Packet List
Initialize the packet sequence counter
Build the static portions of the packet leaving placeholders for any dynamic portions
This includes: Version number, Secondary Header Flag, Type, APID, Seq. Flags, and Packet Data
Length
EndFor

/I NORMAL OPERATIONS
Do Forever
Wait until the time interrupt indicating it is time to build the next packet(s)
For each packet to be built
Increment the packet sequence counter
/I The sequence counter rolls back to zero when it reaches 16384
Insert the current time into the Secondary Header
Index to the proper Format Table
For each entry in that Format Table
If the corresponding telemetry point has changed
Insert the telemetry value into the packet
EndIf
EndFor
Send the packet to the Ground Station module
EndFor
EndDo

The controller module simulating the CTC will construct and send a TIE packet each time the mod_8
counter recycles to zero.

Aboard the spacecraft, packets are assembled into VCDUs, a CADU sync pattern is prepended, Reed-
Solomon check symbols are attached, randomization is performed, and the result is transmitted. The EDOS
Ground Station element removes the randomization, strips the CADU sync and Reed-Solomon check
symbols from data block, and transmits the VCDU to EMOS. The SIMSS simulator will build EDUs,
bypassing the VCDU building steps. Randomization will not be performed.

The “Ground Station” module will take packets from the controller modules and assemble them into EDUs.
When assembled, EDUs will be sent over the I, Q, or I and Q channels simultaneously, depending upon
what the operator has selected. If | and Q transmission is selected, both channels will contain the exact
same data, transmitted at the same time. Note that this is EPGS 16k mode of operations.

EDUs are built as telemetry packets are received. If the packet received will not all fit into the current
EDU, as much data as will fit is put into the EDU and it is transmitted. The remaining packet data will go
into the next EDU to be built. In this case, the M_PDU First Header Pointer of that next EDU will be set to
one byte beyond the end of the partial packet. i.e. it points to the first packet header in the EDU. Note also
that the maximum packet size is 256 bytes. It can take three EDUs to transmit a single packet.

Page 3 of 5

CLCW EDUs are transmitted at the same rate as data EDUs; one CLCW EDU for each data EDU. If | and
Q channels are both active, the exact same CLCW EDU is transmitted over both channels simultaneously.
There are two CLCWs (see the command ingest description). They are transmitted in round-robin fashion.
eg data EDU and spacecraft CLCW EDU, next data EDU and instrument CLCW EDU, next data EDU and
spacecraft CLCW EDU, next data EDU and instrument CLCW EDU, etc.

We have also been asked to simulate the operation of the “ping-pong” buffers aboard the spacecraft. These
are fixed sized buffers with the following hardware attributes/constraints:

« reside in the CTC and provide an intermediary holding point for packets that are destined for
transmission to the ground

» fixed size of 256 bytes

» Cannot split arriving packets across buffers

» Cannot leave arriving packets on the 1553 bus

» If data arrives to quickly to be removed from the buffers to VCDUs (aboard the spacecraft) the buffers
overflow and data is lost.

This means that the following scenario is possible: If buffer A is partially full and a packet arrives that will
not fit, it goes into buffer B. If the next packet arriving will fit, it goes into buffer A. When EDUs are
being filled, buffer A is emptied before any data is removed from buffer B. This means that data will arrive
at the ground out of time order. That is what the EMOS people want us to simulate so they can test their
software for re-arranging packets by APID.

There are a couple of questions to which we need to get answers: (1) are the buffers circular? 1f so, at a
high data rate it might be a long time before any data is removed from buffer B. (2) Once all data is
removed from buffer A and the switch is made to buffer B, does new incoming data go into buffer B, or A?

The following PDL is supplied to assist the coders of the “Ground Station” module. This PDL does not
cover the following cases:

e ping-pong buffer simulation

e Q-channel 256k playback

* Fill CADUs - It is not known whether EDOS will remove fill CADUs or send them on to EMOS.

/I Initilization — Some is TBD
Construct static portions of EDUs
Do Forever
As packets arrive from the Controllers place them into the current EDU being built
As packets arrive place them into the current EDU until 208 bytes have been filled
If the current packet fills the current EDU
Transmit the EDU on the | and/or Q channels, as per the current configuration
Start a new EDU setting the First Header Flag to point to the first full packet in the EDU
EndIf
EndDo

One unknown in this is whether the Primary VCDU Header is included in the EDU or just the M_PDU
subheader.

Page 4 of 5

QUESTIONS:

Is the assumption of the allocation of packet lists near the top of this memo correct? e.g. one for 16k
telemetry, one for 4k telemetry, etc.

Avre there telemetry points that are not an exact multiple of 8 bits in size?

How much of the CADU is preserved in the EDU? It is assumed that only the CADU sync pattern and the
Reed-Solomon check symbols are removed. Is the VCDU header transmitted to EMOS or is it removed by
EDOS?

We are presuming one VCDU per EDU. Is this correct?

Are our assumptions about the working of the ping-pong buffers correct? Are they circular? How is the
switch between buffers made?

It is assumed that SIMSS will have to complete EDUs with fill data occasionally in order to keep the
bandwidth filled. Is this correct?

Under certain conditions the spacecraft transmits CADUSs with nothing but fill data, in order to maintain the
bandwidth. Is this correct? If so, does EDOS discard fill CADUs or send them to EMOS?

Page 5 of 5

Report: C ass Mdel Report
System PMCMVD

By ; equintin

Date : Mon - May 10, 1999

HHRHHHH R RPH R HH R HAH R RH
CLD O ass Synbol s
HERHHHH

Cl ass : CLTU

Description: The CLTU cl ass provi des processing of the Command Li nk Transm ssion
Unit.

ATTRI BUTES:

Nane Type Visibility
tail Sequence Si mBuf fer & I nt ernal
start Sequence Si mBuf fer & I nt ernal
codebl ocks Si mBuf f er & I nt er nal
cltuVval i dationFl ag bool Ext er nal
| ast CLTU SinBuffer [] Ext er nal
start SeqlLengt h short I nt ernal
tai |l SequencelLength short I nt ernal
OPERATI ONS:

Name Return Type Par aneters

veri fyStart Seq bool ()

Description: Verify that the start sequence is correct.

verifyTail Seq bool ()
Description: Verify that the tail sequence is correct.

veri fyLength Unsbyte & ()
Description: Verify that total CLTU length minus the start and tail sequences is
a nmultiple of codebl ock |ength.

next Codebl ock const UnsByte& ()
Description: Returns pointer to the start of the next codeblock in the CLTU.

nuntodebl ocks voi d ()
Description: Returns the number of codebl ocks in the CLTU.

addCLTU bool (const SinBuffer& buffer, const
short length)

Description: Copies the next CLTU into the start sequence, codebl ock, and tail
sequence buffer areas.

Page 1 of 6

Cd ass : Codebl ock
Package : PM CMD

Description: This class contains nethods for processing a codebl ock.

ATTRI BUTES:

Nane Type Visibility
codebl ock_p UnsByte & I nt ernal
codebl ockVal i dat i onFl ag bool Ext er nal
OPERATI ONS:

Nane Return Type Par aneters

addCodebl ock bool ()

Description: Define current codebl ock.

verifyParity bool ()

Description: Verify that the BCH parity byte matches the cal culated parity.
Also verify that the fill bit in the parity byte is zero.

get TCdat a bool (UnsByte &)

Description: Copy the codebl ock data into the specified buffer |ocation.

Cl ass : ConmandThr ead
Package : PM_CMD

Description: This class defines the Conmmand processing thread for the Spacecraft
(SC) Modul e.

OPERATI ONS:
Name Return Type Par aneters
execut e voi d (

Description: This is the execution | oop for the Conmand thread.

Page 2 of 6

d ass : GroundSt at i onMessage
Package : PM CMD

Description: This class buffers conmand nmessages froma G ound Station.

ATTRI BUTES:

Nane Type Visibility
conmmandMsgBuf f er NeTTBuf f er & I nt er nal

OPERATI ONS:

Nanme Return Type Par anet er s

i ngest Si mBuf fer & ()

Description: Read in the next conmmand nessage fromthe Gound Station interface.
get CLTU Si mBuf fer & ()

Description: Return a pointer to the next CLTU in the current comrand nessage
buffer. |If there are no nore CLTUs in the buffer, returns a null pointer.

Cl ass : Packet

Package : PM CMD

Description: This class defines the CCSDS Packets used by PM 1.

ATTRI BUTES:

Nane Type Visibility
version UnsByt e I nt ernal
type bool I nt ernal
secHeader Fl ag bool I nt er nal
api d UnsWor d I nt er nal
seqgFl ag UnsByt e I nt ernal
packet SeqCount UnsWeér d I nt ernal
packet Lengt h UnsWeér d I nt ernal
dat aZone Si mBuf f er & I nt er nal
commandCount UnsByt e I nt er nal
ari thneti cChecksum UnsByt e I nt ernal
packet Val i dati onFl ag bool I nt ernal

Page 3 of 6

OPERATI ONS:

addPacket

| ength)
Descri ption:
poi nter.

get API D
Descri ption:

get Cnds
Descri ption:
ot herwi se.

veri fyChecksum

Descri ption:

checksumis correct or

Par anet ers

Return Type

UnsByt e (SinmBuffer& packet, UnsWord
Initializes the packet header field attributes and data zone
UnsByt e ()

Returns the APID of the packet

bool ()
Return the command count from secondary if applicable or zero

bool ()
Verify the Arithnetic Checksumif present.
not appli cabl e.

Returns true if

veri f yPacket Header bool ()

Description: Verify that packet header fields are valid.

Cl ass : TCdat a

Package PM CMD

Description: This class is used to collect the codebl ock tel econmand data
stripped of parity bytes.

ATTRI BUTES:

Nane Type Visibility

t cBuf SinBuffer [] I nt ernal

OPERATI ONS:

Name Return Type Par anet ers

addTcDat a voi d (const SinBuffer& buffer, const
short length)

Description: Copy the specified bytes fromthe codeblock into a tel ecormand data

col l ection buffer.

get TransFr ane

Descri ption:
buffer.

const SinBuffer & ()
Returns pointer to the next transfer frame in the tel ecommand data

Page 4 of 6

Cl ass : Tr ansf er Fr ane
Package : PM CMD

Description: This class defines a generic Transfer Frane.

ATTRI BUTES:

Nane Type Visibility
byPassFl ag bool I nt er nal
cont r ol CommandFl ag bool I nt ernal
version UnsByt e I nt ernal
spare UnsByt e I nt ernal
scid UnsWor d I nt er nal
vcid UnsByt e I nt er nal
franeLengt h UnsWeér d I nt ernal

f rameSeqCount UnsByt e I nt ernal
frameDat a Si nBuf fer & I nt er nal
OPERATI ONS:

Name Return Type Par aneters

addFr ane voi d (SinmBuffer& buffer, shorté&
| ength)

Description: Initialize transfer frame header and data fields to current
transfer frame.

get Packet voi d (SinmBuffer& buffer, shorté&

| ength)

Description: Returns a pointer to a buffer and a buffer length corresponding to
the next packet in the transfer frane. Returns null pointer and zero length if
a packet cannot be returned.

Page 5 of 6

Vi r t ual Channel

Cl ass :

Package : PM CMD
Descri ption:

gi ven virtual channel.
ATTRI BUTES:

Name

vei d

franeVal i dati onFl ag
farnval i dati onFl ag
clcw

val i dTr ansFr ameCount

i nval i dTr ansFr aneCount
| ast Tr ansFr ane

OPERATI ONS:

addTr ansFr ane
Descri ption:

| sVal i dFr ane
Descri ption:

| svVal i dFARM
Descri ption:

get VCl D

Description: Returns t

get CLCW

Description: Returns

get Val i dFr ameCount
Description: Returns t

get | nval i dFr aneCount
Description: Returns

Val i dates the transfer

Type

UnsByt e

bool

bool

Si nBuf f er [4]
Doubl e

Doubl e

SinBuffer []

Return Type

bool

Defines the current transfer

bool

UnsByt e

const Doubl e&
he virtual channel

const UnsByte&

the contents of the Command Li nk Control

const Doubl e&
he valid transfer

const Doubl e&

the invalid transfer

frame header

This class provides FARM 1 processing for transfer frames in a

Visibility
I nt er nal
Ext er nal
Ext er nal
I nt er nal
I nt er nal
I nt er nal
Ext er nal

Par aneters

(UnsByte&)

frame for the virtual channel.

)
fields.

()

Val i dates that the frane sequence nunber conplies with the Frane
Accept ance and Reporting Mechani sm (FARM

-1 protocol.

()

identifier for this object.

()
Word (CLOW

¢)

frame count

frame count

Page 6 of 6

Use-Case Textual Description for PM-1 Command Ingest

In IP mode, commands come from EMOS as Command Data Blocks (CDBs.) A CDB consists of a 24-
byte Ground Message Header (GMH) followed by up to 6000 bytes of command information. The
command information consists of RF Acquisition Sequence data followed by two or more CLTUs. All data
isin NRZ-L

The acquisition sequence consists of a minimum of 128 bits of alternating ones and zeros, beginning with a
one.

The length field of the GMH gives the total length of the message in bytes, including the GMH length.
Therefore 24 must be subtracted from that length to get the actual data length. The fields of the GMH that
need to be validated may be determined from the EDOS-EGS ICD.

After validating and discarding the GMH, the command ingest software must parse the message for
CLTUs.

A CLTU consists of:

* a16-bit Start Sequence (EB90)

» one to 104 codeblocks (8 bytes each)

» an 8-byte Tail Sequence (C5C5 C5C5 C5C5 C579)

A critical NO-OP is required by the TIE to ensure synchronization. Therefore, the first CLTU will contain
a critical NO-OP command only. It is immediately followed by another CLTU (with any type of
command) with no intervening RF acquisition sequence. It appears that every CLTU is preceded by a
critical NO-OP command CLTU. This may depend upon whether commanding is continuous. If there are
breaks between commands, the byte pattern will be: acquisition sequence, critical NO-OP CLTU,
command CLTU, repeat.

The critical NO-OP CLTU consists of the Start Sequence, one codeblock containing the Transfer Frame
header and NO-OP command, and the Tail Sequence

Notice that CLTUs can be much bigger than AM-1 CLTUs were.

If requested, send the CLTU for display. TBD: Save the latest CLTU for later display? It has been stated
that the last command received should be available for display to the operator at any time prior to shutdown
of the simulator.

If requested, log the CLTU to disk file.

Extract codeblocks from the CLTU and assemble them into Transfer Frames (TF). Perform a BCH parity
check on each codeblock as it is extracted. A BCH error in any codeblock results in the entire CLTU being

discarded and an error message sent to the operator. This parity check may be disabled by the operator.

It appears there may be multiple Transfer Frames per CLTU. Since the Transfer Frame header contains the
VCID, it is possible that Transfer Frames destined for spacecraft and instrument may be mixed.

After the Transfer Frame is assembled compare the actual TF length to the value given in the TF header.
Set the CLCW status if the length is incorrect. This check may be disabled by the operator.

Page 1 of 3

Note that there are two CLCWSs. One is for spacecraft commands; the other is for instrument commands.
They are differentiated by VCID. The information in the CLCWs is maintained for the telemetry transmit
thread, which, in the spacecraft, appends a CLCW to every VCDU transmitted. The CLCWs are
transmitted in round-robin fashion — spacecraft, instrument, spacecraft, instrument, etc. (The simulator
telemetry thread will transmit a CLCW EDU with every telemetry EDU sent. See the telemetry description
for more detail.)

Check the following fields of the Transfer Frame header: version, S/C ID*, bypass and control flags*, and
virtual channel ID*. Errors in the three that are asterisked result in status being placed in the CLCW.

Note that there is no Transfer Frame Error Control (TFEC) field. However, many Transfer Frames have an
arithmetic checksum in the secondary header. Details are available in the Space to Ground ICD and in
TRW IOC memaos. Error processing is TBD.

There are three types of Transfer Frames. Type AD Transfer Frames contain spacecraft or instrument
commands and are subject to the FARM frame sequence count sliding window check. Note that there are
two frame sequence counters, one for each VCID. Spacecraft Transfer Frames have VCID 0 (zero),
instrument Transfer Frames have VCID 1 (one). Receipt of a Type AD Transfer Frame whose frame
sequence count does not equal the Next Expected Frame Sequence Number (the Report field value of the
corresponding CLCW) result in that Virtual Channel going into lockout mode. When a Virtual Channel is
in lockout, no Type AD Transfer Frames are accepted until a Type BC Unlock command is received.

Type BD Transfer Frames contain TIE Critical commands. (This includes the critical NO-OP described
above.) There may be only one TIE Critical command per BD Transfer Frame.

Type BC Transfer Frames contain Control Commands. There are only two Control Commands, UNLOCK
(unlock the FARM lockout) and SET V(R) (set the Next Expected Frame Sequence Number). Again, these
may have VCID equal zero for spacecraft, or equal one for instrument. There may be only one Control
Command per BC Transfer Frame.

After command ingest, packets are extracted from type AD Transfer Frames and are passed to the
command recognition software.

It appears that there may be multiple packets per type AD Transfer Frame. Since the Transfer Frame
header contains the VCID, all packets in a Transfer Frame will be destined for either spacecraft or
instrument.

Type BC Transfer Frames are perhaps best handled within the command ingest software as their effect is
local.

Further processing of type BD Transfer Frames is to be determined.
The following are items for the command recognition software to be developed later. (These are placed
here for informational purposes):

1) the ultimate destination of a command packet (spacecraft or which instrument) is determined by the
APID, which is contained within the packet header.

2) Itis known that some commands (AIRS has been identified) are longer than 48 bits. These commands

arrive in two parts and must be reassembled before they may be acted upon. The implications for the
simulator depend upon the amount of fidelity aspired to. They are to be determined.

Page 2 of 3

3) All spacecraft and instrument commands are 48 bits (or fewer) long so that they may fit into a Stored
Command Sequence slot. There are multiple spacecraft commands per packet. It is believed that there
may be multiple instrument commands per packet.

Most of the preceding discussion may be found in a slightly different form in Section 5.1.2.4, Command
Processing, of the PM-1 Flight Software Requirements Specification. The PM-1 space-to-ground ICD
(TRW document D22262) contains a wealth of detail in a somewhat confusing format.

NOTICE: There are TRW IOCs that modify the Space-to-Ground ICD.

QUESTIONS:
Is every CLTU preceded by a critical NO-OP command CLTU?

It appears there may be multiple Transfer Frames per CLTU. Is this true? If so, will Transfer Frames
destined for spacecraft and instruments be mixed in a single CLTU?

What error processing should be performed on detection of a checksum error? Alert the operator, of
course. Discard the Transfer Frame?

Is there the possibility of multiple packets in a type AD Transfer Frame?

Page 3 of 3

